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Al~'aet--The flow in the developing laminar boundary layers on a flat moving gas-Squid interface is studied 
theoretically. Analysis of the equations shows that flows depend on two parameters, each less than unity. 
Using a perturbation method, an analytical solution with accuracy to the third power of the small parameters 
is obtained and is in close agreement with the exact solution of the problem. 

1. INTRODUCTION 

Investigations of the gas-liquid flow around a moving interface are of interest to boundary layer 
theory in order to study heat- and mass-transfer in two-phase systems. For this purpose the 

equations of motion for both fluids have to be solved using the Prandtl approach. For the case of 

a co-current flow the equations and the boundary conditions are, figure 1: 

2f'+fof=O, 
~ "  + 2~"~ = 0, 

f(O) = ~o(0) = O, f'(oo) = @'(oo) = 1, 

f ' (O) = O,(p'(O), @"(0 )=  -20d"(O). 

[11 

The boundary conditions express the requirements for continuity of velocities and shear stresses 
at the interface as well as the requirements of uniform potential flow away from the moving 
boundary. Here: 

o, u: ~ u :  / ( u : ~  = u:; o= = ~Lu: V ~ , u , . ' , , ~ ) '  [2] 

and the functions f(7/) and ~(sr) are related to the velocity components u and v, the velocities in 
the potential flows U ~  and UL ® respectively for gas and liquid, and the dynamic and kinematic 
viscosities tz and v by the equations: 

uo=U~®f ', v~= \ 4x 1(nf'-13' n = y  , y 3 0 ,  [3] 
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Figure 1. Sketch of the flow. 
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and 

uL = UL ~o, vL = - ~ / [ - - - ~ )  ((~o - ~), ( = =-y V \4z ,  t .x/ y 

The problems [1] were solved numerically by Keulegan (1944), Lock (1951) and Potter (1957) 
without any significant restrictions on the values of 0, and 0z. The method of von Karman was 
applied to obtain initial approximations used for the numerical solution of the problems. 
Analytical expansion of the solution for the case when 0~ ~ 1 and 02 ~ 1 was given by Boyadjiev 
(1971) using a perturbation method with an accuracy to the second power of the small 
parameters. 

The purpose of the present work is to prove the validity of the perturbation method, in this 
case via comparison of the velocity profiles obtained with the results of exact solutions. The 
expansions proportional to the third power of the small parameters 0, and 05 are obtained. This 
provides a higher accuracy of the solutions and a larger interval of their practical applicability. 

2, A N A L Y S I S  

In the case when Uo ® > UL', the parameters 0, and 02 are usually less than unity. The solution 
of [1] is carried out by expanding/(~) and ~p(() in power series of 0, and 02. Thus two main 
questions arise: 

(i) Is it admissible to expand the functions/(~) and ~0(~') as power series in 0, and 02? 
(ii) How many terms in these expansions are sufficient for practical use? 
An answer of the first question is given by comparison of the results obtained by the use of the 

approximate analytical solution to the exact numerical solution. 
By [2], 0, and 0~ are related as follows: 

oW(o?) = ( ~  I~,_ h/ ( , , ,  tv,), [4] 

i.e. intervals for 0, and 02 exist, where they both are less than unity. Let 0 <  011 ~ 01 ~ 0111 < 1; 
1 > 02~  > 02 ~ 02n> 0. For rapid convergence of the analytical expansion it is not possible to 
choose 0, and 02 arbitrarily; the width of the intervals [0, ~, 0/~] depends on the required accuracy 
of the solutions and the number of terms retained in the series expansions. For example, for 
air-water flow the error will not exceed 1% if 0.06 ~< 0, ~< 0,2 and 0.2 ~> 02 t> 0.03, when the terms 
proportional to the third power of 0i are retained. Omission of these higher order terms leads to a 
decrease of the interval width for 1% accuracy. For practical use it is sufficient to obtain the 
terms proportional to 0,"02", where m + n = 3. 

3. SOLUTIONS OF THE BOUNDARY LAYER EQUATIONS 

The problem [I] is linearized after expanding f(~) and ~0(~') in the above mentioned power 
series. The resulting velocity profiles are: 

f ' (~)= f'o(~)+ ( ~ +  x/~rO,O2-aO,O2U) f'~(~) 

0 3 t +(O,2 + 2aMuO,O2~)f~(n)+ , f2(,),  [51 

C (~) = 1 + X/ ~r(aO~ + a.O.~O~) eric ( 

+ x/ cra202~ [ - ,  exp (-,2) erfc , + - ~  erf , . erfc z 

2 2 1 ] 0 3 , X/~r exp(-~r )+~--~ exp(-2~'~) + 2 ~2((). [6] 
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where a = fg(0)= 0.3320 and ot~ = f'l(0)=-0.5447. The unknown functions in [5] and [6] are 
solutions of the linear differential equations set: 

2f~ + fgfo = 0, 

2f"; + M'; + f~, = -aV~, 
2f~' + fof'~ + f~f2 = -a-'(f'~f, + f'ofD, 

fo(0) = f~(0) = 0; f~(oo) = I, 

f,(0) = f',(0) = f',(o~) = 0, 
/2(0) = It(0) = f~(oo) = 0, 

[7] 

~ + 2~'~g = 0, 
'I'+ 2~¢[' = -2~poq~g, 

~'~'+ 2 / '~  = -2(~0¢'~ + ¢ ~,~,), 
¢o(0)= ~,(oo)=0, ~(0)=  -2a, 

~,(0) = ~(®) = ,I(0) = 0 [~(0) = aX/~r], 
~2(0) = ~(®) = ~(0) = 0 [~i(0) = -a]. 

[8] 

The functions fo and/~ were tabulated by Boyadjiev & Piperova (1971) and f: is presented 
graphically in figure 2. The functions ¢o and ~ are obtained by Boyadjiev (1971). They are the 
integrals of the functions in the parenthesis in [6]. The functions ¢2 could be obtained analytically 
by the use of Green's functions, but for practical use it is more convenient to use its graphical 
presentation (see figure 3). 

For checking the accuracy of [5] and [6] "exact" numerical solutions of [I] were carried out. 
The results obtained are shown on figures 4, 5 and 6. It is found in figures 4 and 5 that the velocity 
results for f '  and ¢'  obtained by means of the two methods are fully coincident in the limits of the 
graphical presentation. The deviation of ¢'  calculated from [6] in figure 6 (the dotted line) is due 
the large value of 05. 

4. CONCLUSIONS 

Velocity profiles in laminar boundary layers at the moving interface in a co-current gas-liquid 

flow are obtained using the expansion method. The good coincidence of these results with the 

Figure 2. The function ]~(~ ) and its derivatives. 
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Figure 3. The function ¢~:(g') and its derivatives. 
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Figure 4. The functions f'(7/) and ¢'(~') obtained by the "exact" numerical solution of [11 and by the 
perturbation method ([5] and [6]) for 0, = 0.200; 0z = 0.054 (f'(0) = 0.206; ¢'(0) = 1.031). The functions f (~) ,  

f"(,), ¢ (£) and ,p "(£b-obtalned by the "exact" solution of [ 1] (if(0) = 0.311; ¢'(0) - -0.016). 

ones derived from the "exact" numerical solutions leads to the following conclusions: 
(i) The functions f ( , )  and ~(~') can be expanded in series of the powers of 0, and 0:. 
(ii) The equations obtained for f(~) and ~(f)  are quite accurate for practical use, when the 

third powers of 0, and 02 are retained. 
(iii) The method of perturbation can be successfully used for calculation of the subsequent 

approximations in principle without any computational difficulties. 
(ix) Increase of the accuracy of [5] by decreasing 0, leads to decrease of the accuracy of [6] 

and conversely. 



LAMINAR BOUNDARY LAYERS OF CO~URRENT GAS-LIQUID STRATIFIED FLOWS,-I 55 

IC 

I 
-0.2 .~  

2Lp 

~0~  0.4 0.6 08 I0 ] /  

% ~p,/" 

"2 

1.2 [ f~ f " f  ~ 
~p.,,p'. ~p" 

Figure 5. The functions f '(~) and ¢ ' ( ( )  obtained by the "exact" numerical solution of [1] and by the 
perturbation method ([5] and [6]) for 0, = 0.100; 02 = 0.152 (y'(0) = 0.110; ¢'(0) = 1.087). The functions .f(.q), 

f"(vl), ¢( ( )  and q~"([)--obtained by the "exact" solution of [1} (.if(0) = 0.327; q,'(0) .~ --0.049). 
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Figure 6. The functions f'(.q) and ¢'(~') obtained by the "exact" numerical solution of [1] and by the 
perturbation method ([5] and [6]) for 0, = 0.050; 02 = 0.600 (Y'(0) = 0.603; ¢'(0) = 1.232). The functions f07), 

f"('q), ¢ (~) and ¢ "(()---obtained by the "exact" solution of [1] (y'(0) = 0.330; ¢ "(0) = -0.142). 
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